Please note: Any medical or genetic information present in this entry is not intended as a diagnosis of your problem, but rather is provided as a helpful guide for research, educational and informational purposes only. It is not in any way intended to be used as a substitute for professional medical advice, diagnosis, treatment or care. Information is not necessarily complete. Please see your doctor for diagnosis and treatment.

Please note: DNAtraffic database is the project under construction and information on this page is not finished yet.



TYPE: small molecule

GROUP: approved

Amikacin is a semi-synthetic aminoglycoside antibiotic derived from kanamycin A. Similar to other aminoglycosides, amikacin disrupts bacterial protein synthesis by binding to the 30S ribosome of susceptible organisms. Binding interferes with mRNA binding and tRNA acceptor sites leading to the production of non-functional or toxic peptides. Other mechanisms not fully understood may confer the bactericidal effects of amikacin. Amikacin is also nephrotoxic and ototoxic.

VOLUME OF DISTRIBUTION: 24 L [normal adult subjects]

Anti-Bacterial Agents Aminoglycosides

ABSORPTION: Rapidly absorbed after intramuscular administration. Rapid absorption occurs from the peritoneum and pleura. Poor oral and topical absorption. Poorly absorbed from bladder irrigations and intrathecal administration.

For short-term treatment of serious infections due to susceptible strains of Gram-negative bacteria, including Pseudomonas species, Escherichia coli, species of indole-positive and indole-negative Proteus, Providencia species, Klebsiella-Enterobacter-Serratia species, and Acinetobacter (Mima-Herellea) species. Amikacin may also be used to treat Mycobacterium avium and Mycobacterium tuberculosis infections.

Amikacin is an aminoglycoside antibiotic. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit, causing misreading of t-RNA, leaving the bacterium unable to synthesize proteins vital to its growth. Aminoglycosides are useful primarily in infections involving aerobic, Gram-negative bacteria, such as Pseudomonas, Acinetobacter, and Enterobacter. In addition, some mycobacteria, including the bacteria that cause tuberculosis, are susceptible to aminoglycosides. Infections caused by Gram-positive bacteria can also be treated with aminoglycosides, but other types of antibiotics are more potent and less damaging to the host. In the past the aminoglycosides have been used in conjunction with penicillin-related antibiotics in streptococcal infections for their synergistic effects, particularly in endocarditis. Aminoglycosides are mostly ineffective against anaerobic bacteria, fungi and viruses.

Aminoglycosides like Amikacin "irreversibly" bind to specific 30S-subunit proteins and 16S rRNA. Amikacin inhibits protein synthesis by binding to the 30S ribosomal subunit to prevent the formation of an initiation complex with messenger RNA. Specifically Amikacin binds to four nucleotides of 16S rRNA and a single amino acid of protein S12. This interferes with decoding site in the vicinity of nucleotide 1400 in 16S rRNA of 30S subunit. This region interacts with the wobble base in the anticodon of tRNA. This leads to interference with the initiation complex, misreading of mRNA so incorrect amino acids are inserted into the polypeptide leading to nonfunctional or toxic peptides and the breakup of polysomes into nonfunctional monosomes.


Mild and reversible nephrotoxicity may be observed in 5 - 25% of patients. Amikacin accumulates in proximal renal tubular cells. Tubular cell regeneration occurs despite continued drug exposure. Toxicity usually occurs several days following initiation of therapy. May cause irreversible ototoxicity. Otoxocity appears to be correlated to cumulative lifetime exposure. Drug accumulation in the endolymph and perilymph of the inner ear causes irreversible damage to hair cells of the cochlea or summit of ampullar cristae in the vestibular complex. High frequency hearing is lost first with progression leading to loss of low frequency hearing. Further toxicity may lead to retrograde degeneration of the 8th cranial (vestibulocochlear) nerve. Vestibular toxicity may cause vertigo, nausea, vomiting, dizziness and loss of balance.

Enteric bacteria and other eubacteria