Please note: Any medical or genetic information present in this entry is not intended as a diagnosis of your problem, but rather is provided as a helpful guide for research, educational and informational purposes only. It is not in any way intended to be used as a substitute for professional medical advice, diagnosis, treatment or care. Information is not necessarily complete. Please see your doctor for diagnosis and treatment.

Please note: DNAtraffic database is the project under construction and information on this page is not finished yet.

Gemifloxacin


ACCESSION NB: DB01155 (APRD00053)


TYPE: small molecule


GROUP: approved


DESCRIPTION:
Gemifloxacin is an oral broad-spectrum quinolone antibacterial agent used in the treatment of acute bacterial exacerbation of chronic bronchitis and mild-to-moderate pneumonia. Gemifloxacin acts by inhibiting DNA synthesis through the inhibition of both DNA gyrase and topoisomerase IV, which are essential for bacterial growth.

VOLUME OF DISTRIBUTION: 1.66 to 12.12 L/kg

CATEGORIES:
Anti-Bacterial Agents Quinolones

ABSORPTION: Rapidly absorbed from the gastrointestinal tract. The absolute bioavailability averages approximately 71%.

INDICATION:
For the treatment of bacterial infection caused by susceptible strains such as S. pneumoniae, H. influenzae, H. parainfluenzae, or M. catarrhalis, S. pneumoniae (including multi-drug resistant strains [MDRSP]), M. pneumoniae, C. pneumoniae, or K. pneumoniae.

PHARMACODYNAMICS:
Gemifloxacin is a quinolone/fluoroquinolone antibiotic. Gemifloxacin is bactericidal and its mode of action depends on blocking of bacterial DNA replication by binding itself to an enzyme called DNA gyrase, which allows the untwisting required to replicate one DNA double helix into two. Notably the drug has 100 times higher affinity for bacterial DNA gyrase than for mammalian. Gemifloxacin is a broad-spectrum antibiotic that is active against both Gram-positive and Gram-negative bacteria.

MECHANISM OF ACTION:
The bactericidal action of gemifloxacin results from inhibition of the enzymes topoisomerase II (DNA gyrase) and topoisomerase IV, which are required for bacterial DNA replication, transcription, repair, and recombination.

PROTEIN BINDING:
60-70%

METABOLISM:
Gemifloxacin is metabolized to a limited extent by the liver. All metabolites formed are minor (

AFECTED ORGANISMS:
Enteric bacteria and other eubacteria